736 research outputs found

    Towards a population of HMXB/NS microquasars as counterparts of low-latitude unidentified EGRET sources

    Get PDF
    The discovery of the microquasar LS 5039 well within the 95% conficence contour of the Unidentified EGRET Source (UES) 3EG J1824-1514 was a major step towards the possible association between microquasars (MQs) and UESs. The recent discovery of precessing relativistic radio jets in LS I +61 303, a source associated for long time with 2CG 135+01 and with the UES 3EG J0241+6103, has given further support to this idea. Finally, the very recently proposed association between the microquasar candidate AX J1639.0-4642 and the UES 3EG J1639-4702 points towards a population of High Mass X-ray Binary (HMXB)/Neutron Star (NS) microquasars as counterparts of low-latitude unidentified EGRET sources.Comment: 12 pages, 7 figures. Proceedings of the Conference "The Multiwavelength Approach to Unidentified Gamma-ray Sources", to appear in the journal Astrophysics and Space Scienc

    Resonant x-ray diffraction study of the magnetoresistant perovskite Pr0.6Ca0.4MnO3

    Full text link
    We report a x-ray resonant diffraction study of the perovskite Pr0.6Ca0.4MnO3. At the Mn K-edge, this technique is sensitive to details of the electronic structure of the Mn atoms. We discuss the resonant x-ray spectra measured above and below the charge and orbital ordering phase transition temperature (TCOO = 232 K), and present a detailed analysis of the energy and polarization dependence of the resonant scattering. The analysis confirms that the structural transition is a transition to an orbitally ordered phase in which inequivalent Mn atoms are ordered in a CE-type pattern. The Mn atoms differ mostly by their 3d orbital occupation. We find that the charge disproportionation is incomplete, 3d^{3.5-\delta} and 3d^{3.5+\delta} with \delta\ll0.5 . A revised CE-type model is considered in which there are two Mn sublattices, each with partial e_{g} occupancy. One sublattice consists of Mn atoms with the 3x^{2}-r^{2} or 3y^{2}-r^{2} orbitals partially occupied, the other sublattice with the x^{2}-y^{2} orbital partially occupied.Comment: 15 pages, 15 figure

    Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants

    Full text link
    Supernova remnants have long been suggested as a class of potential counterparts to unidentified gamma-ray sources. The mechanisms by which such gamma-rays can arise may include emission from a pulsar associated with a remnant, or a variety of processes associated with energetic particles accelerated by the SNR shock. Imaging and spectral observations in the X-ray band can be used to identify properties of the remnants that lead to gamma-ray emission, including the presence of pulsar-driven nebulae, nonthermal X-ray emission from the SNR shells, and the interaction of SNRs with dense surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop: "The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE, Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    The Multiwavelength Approach to Unidentified Gamma-Ray Sources

    Full text link
    As the highest-energy photons, gamma rays have an inherent interest to astrophysicists and particle physicists studying high-energy, nonthermal processes. Gamma-ray telescopes complement those at other wavelengths, especially radio, optical, and X-ray, providing the broad, mutiwavelength coverage that has become such a powerful aspect of modern astrophysics. Multiwavelength techniques of various types have been developed to help identify and explore unidentified gamma-ray sources. This overview summarizes the ideas behind several of these methods.Comment: Proceedings of the Conference "The Multiwavelength Approach to Unidentified Sources", to appear in the journal Astrophysics and Space Scienc

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays

    Full text link
    Laboratory experiments to explore plasma conditions and stimulated particle acceleration can illuminate aspects of the cosmic particle acceleration process. Here we discuss the cosmic-ray candidate source object variety, and what has been learned about their particle-acceleration characteristics. We identify open issues as discussed among astrophysicists. -- The cosmic ray differential intensity spectrum is a rather smooth power-law spectrum, with two kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. We believe that Galactic sources dominate up to 10^17 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with Galactic contributions throughout the 10^15--10^18 eV range. Pulsars and supernova remnants are among the prime candidates for Galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes are related to shocks from violent ejections of matter from energetic sources such as supernova explosions or matter accretion onto black holes. Details of such acceleration are difficult, as relativistic particles modify the structure of the shock, and simple approximations or perturbation calculations are unsatisfactory. This is where laboratory plasma experiments are expected to contribute, to enlighten the non-linear processes which occur under such conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental physics and ultra-high laser fields. From review talk at "Extreme Light Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings and references at EPJD proofs stag

    Unidentified gamma-ray sources off the Galactic plane as low-mass microquasars?

    Get PDF
    A subset of the unidentified EGRET gamma-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 +/- 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (~15 deg) and small (~1 deg) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.Comment: 11 pages, 5 figures. Contributed paper to the "Multiwavelength Approach to Unidentified Gamma-Ray Sources", Eds. K.S. Cheng & G.E. Romero, to appear in Astrophysics and Space Science journa

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    The first catalog of active galactic nuclei detected by the Fermi large area telescope

    Get PDF
    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 ?-ray sources located at high Galactic latitudes (|b|>10°) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing ?-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties—such as ?-ray fluxes and photon power-law spectral indices, redshifts, ?-ray luminosities, variability, and archival radio luminosities—and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the ?-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequenc
    • 

    corecore